9.1 can interpret solutions as viable or non- viable
options for a system of inequalities. ( A.CED. 3)

Ex. Solve the following system of inequalities and
check if (2, -2) is a solution of the system
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10. I can represent constraints by inequalities or system of
inequalities and graph it to find the feasible region(A.CED.

Ex. Find the objective function for the following problem

Baking a tray of corn muffins takes 4c milk and 3¢ wheat
flour. A tray of bran muffins takes 2¢ milk and 3¢ wheat
flour. A baker has 16¢ milk and 15¢ wheat flour. He makes
$3 profit per tray of corn muffins and $2 profit per tray of
bran muffins.
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11. 1 can use the constraints represented by l/€3 A
inequalities or system on inequalities to find the set
of (x, y) that maximizes or minimizes the objective
function and find the maximum and/or minimum
values(A.CED. 3)

Ex. For the previous problem find how many trays
of each type of muffin should the baker make to
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maximize his profit. What is the maximum profit
that that he can make.
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