Section P6: Solving Quadratic Equations

- A quadratic equation can be written in the form: ax²+bx+c (where a≠0)
- Quadratic equations could be solved either graphically (by finding the x-intercepts) or algebraically using one of the following methods:
- 1. Factoring (example 1 p40)
- 2. Extracting Square roots (example 2 page 41)
- $(x+2)^2 = 5$
- 3. Completing the square (example 3 page 42)
- 4. Using the Quadratic formula (example 4 page 42)
 - Always works. $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
- The graph of a quadratic function (parabola) could have the following 3 positions in the coordinate plane:

- Therefore, a quadratic equation could have:
- 2 real solutions (2 x intercepts)
- 1 Real solution (1 x intercept)
- No real solution (complex solution) No x intercept

Discriminant

- To find the number of real solution of a quadratic equation, calculate the discriminant: $b^2 4ac$
- If $b^2 4ac > 0$ (positive) then there are 2 real solutions
- If $b^2 4ac$ =0 then there is one real solution
- If b² 4ac <0 (negative) then there is NO real solution, there is a complex conjugate pair of solutions.

Note: conjugate of a+bi is a-bi
2+3i 2-3i

Example

Use the discriminant to find the number of real solutions of the following equation, then solve it algebraically:

$$x^{2}+x+1=0$$

$$\alpha=1$$

$$b=1$$

$$c=1$$

$$b^{2}-4ac=1^{2}-4(1)(1)=1-4=-3 \text{ No real sol}$$

$$X=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}$$

$$X=\frac{-1\pm \sqrt{93}}{2}$$

$$X=\frac{-1\pm \sqrt{3}}{2}$$

$$X=-\frac{1\pm \sqrt{3}}{2}i$$

$$X=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$$

$$X=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$$

$$X=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$$

$$X=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$$

Homework

- Page 53# 41 through 44
- Also start reviewing for chapter P mini test on Tuesday 09/19
- · I can statements will be on the blog
- Review all textbook problems that were assigned throughout this chapter
- Last section P7 on Monday