Sam is flying a kite. The kite string has an angle of elevation of 63°. If Richard is standing 70 feet from Sam at a point on the ground directly below the kite, find the length of the kite string.

∆ABC ~ ∆DEC

Which proportions can be used to solve for x? Explain why or why not for each proportion

explain wity of wity not for each proportion.			
	Yes	No	Explain
$\frac{4}{6} = \frac{12}{18}$		X	x is not part of proportion
$\frac{6}{4} = \frac{x}{3}$		X	It would need to be 3/x
$\frac{18}{12} = \frac{3}{x}$	X		18 and 3 are in the
$\frac{6}{4} = \frac{3}{x}$	X		Correct sides are
$\frac{18}{12} = \frac{6}{x}$		X	6 doesn't correspond
$\frac{4}{6} = \frac{3}{x}$		X	It would need to be & Since
			Same D. the

a)Find m< ABC if the m<CAD = 54 degrees.

D is the center of the circle

 $\Delta BCA \sim \Delta WXY$

Which proportions can be used to solve for a? Explain why or why not for each proportion.

	Yes	No	Explain
$\frac{5}{a} = \frac{21}{7}$		X	a doesn't correspond
$\frac{7}{21} = \frac{6}{18}$		X	nox in the prop.
$\frac{5}{a} = \frac{21}{6}$		X	5 doesn't correspon
$\frac{5}{a} = \frac{7}{21}$	X		corresponding sides are
$\frac{5}{a} = \frac{18}{6}$		X	9 doesn't correspond
$\frac{5}{a} = \frac{6}{18}$	X		corresponding sides

Find the volume of the shapes below. Use proper units in your answer.

Shape	Area of Base	Height	Volume
Cylinder	25π ft²	7 ft	V= 13 h V=549.8 ft3
Cone	25π ft²	7 ft	V=3Bh V=325m(7)=183,3
Prism	36 ft ²	15 ft	V= 36.15 V= 540 F+3
Pyramid	36 ft ²	15 f†	V= \$36.15

What is the difference in the volumes of the cylinder and the prism? ~ 3

What is the difference in the volumes of the cone and the pyramid?

Use the following reasons to complete the proof. There are more reasons than needed.

- a. Given
- b. Definition of parallelogram.
- c. When two parallel lines are intersected by a transversal, same side interior angles are congruent.
- d. When two parallel lines are intersected by a transversal, same side interior angles are supplementary.
- e. When two parallel lines are intersected by a transversal, alternate interior angles are congruent.
- f. When two parallel lines are intersected by a transversal, alternate interior angles are supplementary.
- g. Vertical Angles are congruent.
- h. Shared Side. reflexive property
- i. Transitive Property of Congruence
- j. 555
- k. AAA
- I. SAS
- m. ASA
- m. ASA
- n. AAS o. AA~
- p. Corresponding parts of congruent triangles are congruent (CPCTC) or Definition of Congruent Triangles.

Given: GEOM is a parallelogram

Prove:

 $\overline{GE} \cong \overline{OM}, \overline{MG} \cong \overline{EO}$

Reasons	
Given (a)	
One - 7	
def of pora (b)	
alt int c's	
(8)	
reflexive (h)	
ASA (m)	
dy of = d's (p)	

One method that can be used to prove that the diagonals of a parallelogram bisect each other is shown below. There are 3 mistakes in the proof. Find and correct them.

Given: ABCD is a parallelogram

Prove: AE = CE and DE = BE

Statement	Reason	
1. ABCD is a parallelogram	1. Given	
2.AB is parallel to DC AD is parallel to BC	2. Definition of parallelogram	
3.∠ABD ≅ ∠CDB, ∠BAC ≅ ∠DCA	3. When two parallel lines are intersected by a transversal, same side interior angles are congruent.	
X.AE = EC and DE = EB AB = DC	4. Opposite sides of a parallelogram are congruent	
$5.\Delta DCE \cong \Delta BAE$	5. AAA ASA	
$6.\overline{AE} \cong \overline{CE}, \overline{DE} \cong \overline{BE}$	6. CPCTC (def & S'S)	
7.AE = CE	7. Definition of congruent	
DF = RF	seaments	