Action & Reaction: Equal & Opposite

Physics 1

Forces and Interaction: Action-Reaction Pairs

In each case, draw a free body diagram of the object. For every force you draw, identify the reaction force.

1. A book sitting at rest on a table.

FBD	Action	Reaction
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	Earth pulls down on Book Table pushes up on Book	Book pulls up on Earth Book pushes down on Table

2. A girl pushing a book across a table.

FBD	Action	Reaction
$F_{f} \xleftarrow{F_{N}} F_{girl}$	Girl pushes Book forward Table pushes up on Book Table pulls back on Book Earth pulls down on Book	Book pushes back on Girl Book pushes down on Table Book pushes forward on Table Book pulls up on Earth

3. An apple falling from a tree. Include air resistance.

FBD	Action	Reaction
$ \underset{F_{g}}{\overset{\blacktriangle}{\vdash}}_{F_{g}}^{F_{R}} $	Earth pulls down on Apple Air pushes up on Apple	Apple pulls down on Earth Apple pushes down on Air

4. A helicopter hovering stationary in the air.

FBD	Action	Reaction
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Earth pulls down on Helicopter Air pushes up on Helicopter	Helicopter pulls up on Earth Helicopter pushes down on Air

5. A rocket flying through space.

FBD	Action	Reaction
\longrightarrow F _{engine}	Gas pushes Rocket forward	Rocket pushes Gas backward

6. An airplane flying in a straight line through the air.

FBD	Action	Reaction
$F_R \xleftarrow{F_L}{F_g} F_{engines}$	Earth pulls down on Plane Air pushes Plane forward Air pushes Plane upward Air pushes back on Plane	Plane pulls up on Earth Plane pushes Air backward Plane pushes Air downward Plane pushes Air forward

Equal Force \neq **Equal Acceleration**

7. A father (80 kg) and his young son (25 kg) are standing on ice. The son pushes his father backward with a force of 15 N. What will the father's acceleration be? What will the son's acceleration be?

$$a_F = F_{SF} / m_F = (15 \text{ N}) / (80 \text{ kg}) = 0.1875 \text{ m/s}^2 \qquad F_{SF} = \underline{15 \text{ N}}, a_F = \underline{0.188 \text{ m/s}^2}$$
$$a_S = F_{FS} / m_S = (15 \text{ N}) / (25 \text{ kg}) = 0.6 \text{ m/s}^2 \qquad F_{FS} = \underline{15 \text{ N}}, a_S = \underline{0.6 \text{ m/s}^2}$$

8. A person firing a rifle (80 kg) fires a bullet (mass = 0.030 kg). The bullet is fired forward with an acceleration of 10,000 m/s². How much backwards acceleration does the person experience?

$$F_{PB} = m_B * a_B = (0.030 \text{ kg}) * (10,000 \text{ m/s}^2) = 300 \text{ N}$$

$$F_{PB} = \underline{300 \text{ N}}, a_B = \underline{10,000 \text{ m/s}^2}$$

$$a_P = F_{BP} / m_P = (300 \text{ N}) / (80 \text{ kg}) = 3.75 \text{ m/s}^2$$

$$F_{PB} = \underline{300 \text{ N}}, a_P = \underline{3.75 \text{ m/s}^2}$$

9. A person (70 kg) takes a step forward on an airplane (300,000 kg) with an acceleration of 3 m/s². How much backwards acceleration does the airplane experience as a result of the person stepping forward?

$$F_{AP} = m_P * a_P = (70 \text{ kg}) * (3 \text{ m/s}^2) = 210 \text{ N}$$

$$F_{AP} = \underline{210 \text{ N}}, a_P = \underline{3 \text{ m/s}^2}$$

$$a_A = F_{PA} / m_A = (210 \text{ N}) / (300,000 \text{ kg}) = 0.0007 \text{ m/s}^2$$

$$F_{PA} = \underline{210 \text{ N}}, a_A = \underline{0.0007 \text{ m/s}^2}$$

10. What is all 200 people on the airplane took a step forward at the same time? What would the resulting force and acceleration on the airplane be then?

 $F_{PA} = 200*(210 N) = 42,000 N \Rightarrow a_A = F_{PA} / m_A = (42,000 N) / (300,000 kg) = 0.14 m/s^2$

$$F_{PA} =$$
 42,000 N, $a_A =$ 0.14 m/s²

11. A person (70 kg) jumps off of a building and falls with an acceleration of 9.8 m/s². How fast does the Earth (6 x 10^{24} kg) accelerate upwards towards him?

$$F_{EP} = m_P * g = (70 \ kg) * (9.8 \ m/s^2) = 686 \ N$$

$$F_{EP} = \underline{686 \ N}, \ a_P = \underline{9.8 \ m/s^2}$$

$$a_E = F_{PE} / m_E = (686 \ N) / (6 \ x \ 10^{24} \ kg) = 1.14 \ x \ 10^{-22} \ m/s^2$$

$$F_{PE} = \underline{686 \ N}, \ a_E = \underline{1.14 \times 10^{-22} \ m/s^2}$$

12. How far does the person fall towards the Earth in 1 second? How far does the Earth move towards the person in 1 second?

$$d_P = \frac{1}{2} a_P t^2 = \frac{1}{2} (9.8 \text{ m/s}^2)(1 \text{ s})^2 = 4.9 \text{ m}$$

 $d_P = \underline{4.9 \text{ m}}$

$$d_E = \frac{1}{2} a_E t^2 = \frac{1}{2} (1.14x 10^{-22} \text{ m/s}^2)(1 \text{ s})^2 = 5.7 x 10^{-23} \text{ m}$$
(this is about ten trillion times smaller than the width of an atom!)

13. What if all 6 billion (6 x 10⁹) people on Earth jumped of a building at the same time on the same side of the Earth. What would be the acceleration then?

$$F_{PE} = (6,000,000)*(686 N) = 4.11 \times 10^{12} N$$

$$\Rightarrow a_E = F_{PE} / m_E = (4.11 \times 10^{12} N) / (6 \times 10^{24} \text{ kg}) = 6.86 \times 10^{-13} \text{ m/s}^2$$

$$F_{PE} = \underline{4.11 \times 10^{12} N}$$

$$a_E = \underline{6.86 \times 10^{-13} \text{ m/s}^2}$$

14. How far would the Earth move in 1 second as a result of everyone jumping at once?

$$d_{E} = \frac{1}{2} a_{E} t^{2} = \frac{1}{2} (6.86 \times 10^{-13} \text{ m/s}^{2})(1 \text{ s})^{2} = 3.43 \times 10^{-13} \text{ m}$$

$$d_{E} = \underline{3.43 \times 10^{-13} \text{ m}}$$
(this is STILL about one thousand times smaller than the width of an atom!!!)