Acti Phys	on & Reaction: Equal	& Opposite Name: _ Period:			
Forces and Interaction: Action-Reaction Pairs					
In eac	ch case, draw a free body diagra	am of the object. For every force yo	u draw, identify the reaction force.		
1. A book sitting at rest on a table.					
	FBD	Action	Reaction		
2. A girl pushing a book across a table.					
	FBD	Action	Reaction		
3. A	3. An apple falling from a tree. Include air resistance.				
	<u>FBD</u>	Action	Reaction		
4. A	4. A helicopter hovering stationary in the air.				
	FBD	<u>Action</u>	Reaction		
5. A	5. A rocket flying through space.				
	<u>FBD</u>	<u>Action</u>	Reaction		
6. A	6. An airplane flying in a straight line through the air.				
	<u>FBD</u>	Action	Reaction		

Equal Force \neq **Equal Acceleration**

7.	A father (80 kg) and his young son (25 kg) are standing on ice. The son pushes his father backward with a force of 15 N. What will the father's acceleration be? What will the son's acceleration be?
	$F_{SF} = \underline{\hspace{1cm}}, a_F = \underline{\hspace{1cm}}$
	$F_{FS} = \underline{\hspace{1cm}}, a_S = \underline{\hspace{1cm}}$
8.	A person firing a rifle (80 kg) fires a bullet (mass = 0.030 kg). The bullet is fired forward with an acceleration of $10,000$ m/s ² . How much backwards acceleration does the person experience?
	$F_{PB} = $
	$F_{BP}=$
9.	A person (70 kg) takes a step forward on an airplane (300,000 kg) with an acceleration of 3 m/s². How much backwards acceleration does the airplane experience as a result of the person stepping forward?
	$F_{AP} = \underline{\hspace{1cm}}, a_P = \underline{\hspace{1cm}}$
	$F_{PA} = $
10.	What if all 200 people on the airplane took a step forward at the same time? What would the resulting force and acceleration on the airplane be then?
	$F_{PA} = $
11.	A person (70 kg) jumps off of a building and falls with an acceleration of 9.8 m/s 2 . How fast does the Earth (6 x 10^{24} kg) accelerate upwards towards him?
	$F_{EP} = \underline{\hspace{1cm}}$, $a_P = \underline{\hspace{1cm}}$
	$F_{PE} = \underline{\hspace{1cm}}$, $a_E = \underline{\hspace{1cm}}$
12.	How far does the person fall towards the Earth in 1 second? How far does the Earth move towards the person in 1 second?
	$d_P = \underline{\hspace{1cm}}$
	$\mathbf{d}_{\mathrm{E}} = \underline{\hspace{1cm}}$
13.	What if all 6 billion (6 x 10^9) people on Earth jumped of a building at the same time on the same side of the Earth. What would be the acceleration then?
	$F_{PA} = $
14.	How far would the Earth move in 1 second as a result of everyone jumping at once?
	$ m d_E =$